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ABSTRACT

Social Internet of Things (SIoT), a promising and emerging para-
digm that injects the notion of social networking into smart objects
(i.e., things), paving the way for the next generation of Internet
of Things. However, due to the risks and uncertainty, a crucial
and urgent problem to be settled is establishing reliable relation-
ships within SIoT, that is, trust evaluation. Graph neural networks
for trust evaluation typically adopt a straightforward way such as
one-hot or node2vec to comprehend node characteristics, which
ignores the valuable semantic knowledge attached to nodes. More-
over, the underlying structure of SIoT is usually complex, including
both the heterogeneous graph structure and pairwise trust relation-
ships, which renders hard to preserve the properties of SIoT trust
during information propagation. To address these aforementioned
problems, we propose a novel knowledge-enhanced graph neural
network (KGTrust) for better trust evaluation in SIoT. Specifically,
we first extract useful knowledge from users’ comment behaviors
and external structured triples related to object descriptions, in or-
der to gain a deeper insight into the semantics of users and objects.
Furthermore, we introduce a discriminative convolutional layer
that utilizes heterogeneous graph structure, node semantics, and
augmented trust relationships to learn node embeddings from the
perspective of a user as a trustor or a trustee, effectively capturing
multi-aspect properties of SIoT trust during information propa-
gation. Finally, a trust prediction layer is developed to estimate
the trust relationships between pairwise nodes. Extensive experi-
ments on three public datasets illustrate the superior performance
of KGTrust over state-of-the-art methods.

CCS CONCEPTS

» Mathematics of computing — Graph algorithms; - Comput-
ing methodologies — Neural networks.
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1 INTRODUCTION

With the rapid development of Internet of Things (IoT) and com-
munication technology, Social Internet of Things (SIoT) [1, 38],
which integrates the concept of social networking into the IoT
ecosystem, has aroused considerable research interest. The typical
paradigm of SIoT involves a massive number of users, objects (or
things) and their associations (user-user, user-object, as well as
object-object). However, due to the inherent openness of SIoT, it
is inevitable that malicious users or objects spread incorrect infor-
mation or launch illegal attacks, inflicting serious damage to the
availability and integrity of network resources. In addition, as users
increasingly depend on intelligent and interconnected objects in
every aspect of life, the demand for security and privacy is growing
significantly. Therefore, it is of great importance and urgent to
effectively establish reliable relationships within SIoT.

Trust evaluation [6, 29], which aims to evaluate the unobserved
trust relationship between a pair of nodes, is considered an effective
method for assessing SIoT’ credibility and reliability. To date, an
extensive amount of algorithms for trust evaluation have been
proposed. For example, several studies adopt the idea of random
walk [18, 20], employing trust propagation along the path from the
source node to the target node to assess trustworthiness. Another
line of attempt is the matrix factorization-based method [23, 42],
which factorizes a trust matrix into low-rank embeddings of nodes
and their correlations by incorporating prior knowledge or node-
related information. However, these methods either rely heavily on
the observed trust relationships or incur the high computational
overhead, limiting the performance of trust evaluation.

Recently, graph neural networks (GNNs) [12, 37, 43],which ex-
hibit significant power in naturally capturing both graph structure
and node features, have gained great success and paved a new
way for trust evaluation. For instance, Guardian [17] estimates
the trustworthiness among two nodes by designing a GNN-based
model that captures both graph structure and associated trust re-
lationships. GATrust [10] presents a GNN-driven approach which
integrates multiple node attributes and observed trust interactions
to predict the trustworthiness of pairwise nodes. However, these
methods suffer from an inability to well comprehend and analyze
node semantics, as they usually initialize node embeddings via
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straightforward ways such as one-hot or node2vec. More impor-
tantly, the observed trust relationships in real-world are often very
sparse [25], which makes it difficult for these methods to fully
model the multi-aspect properties of SIoT trust during information
propagation, thus negatively influencing the prediction of trust
relationships.

So an interesting yet important question is how to effectively de-
sign a GNN-based method for more accurate trust evaluation within
SIoT. Particularly, two challenges need to be addressed. First, the
rich node semantics within SIoT should be taken into consideration.
As nodes in SIoT are generally associated with textual information
such as comments or descriptions, it is crucial to deeply mine and
encode these useful data to essentially embody the inherent char-
acteristics of nodes. Second, multi-aspect properties of SIoT trust
should be effectively preserved. The underlying structure of SIoT
is usually complex, which contains not only the heterogeneous
graph structure but also the pairwise trust relationships. There-
fore, a reliable GNN-based method ought to make allowance for
flexibly preserving the properties of SIoT trust (including asym-
metric, propagative, and composable nature) when information
propagates along the heterogeneous graph structure, especially
when the observed trust connections are very sparse.

In light of the aforementioned challenges, we propose KGTrust, a
knowledge enhanced graph neural network model for trust evalua-
tion in SIoT. Specifically, we first design an embedding layer to fully
model the semantics of users and objects by extracting useful and
relevant knowledge from users’ comment behaviors and external
structured triples, respectively. We then introduce a personalized
PageRank-based neighbor sampling strategy to augment the trust
structure, alleviating the sparsity of user-specific trust relationships.
After that, we employ a discriminative convolutional mechanism to
learn node embeddings from the perspective of a user as a trustor
or a trustee, and adaptively integrate them with a learnable gating
mechanism. In this way, multi-aspect properties of SIoT trust, in-
cluding asymmetric, propagative and composable nature, can be
effectively preserved. Finally, the learned embeddings for pairwise
users are concatenated and fed into a prediction layer to estimate
their trust relationships.

We summarize our main contributions as follows:

o To the best of our knowledge, we are the first to gain a deeper
insight into the trust evaluation within SIoT via jointly con-
sidering three key ingredients, that is, heterogeneous graph
structure, node semantics and associated trust relationships.

e We present a novel knowledge enhanced graph neural net-
work, named KGTrust, which innovatively mines and mod-
els the intrinsic characteristics of users and objects with
the guidance of external knowledge and multi-aspect trust
properties, for assessing trustworthiness in SIoT.

e Extensive experiments across three public datasets demon-
strate the superior performance of the new approach KGTrust
over state-of-the-art baselines.

2 PRELIMINARIES

We first give the notations and problem definition, then introduce
properties of SIoT trust, and finally discuss graph neural networks
as the base of our proposed KGTrust.

Zhizhi Yu!, Di Jin!, Cuiying Huo!, Zhigiang Wangl, Xiulong Liul, Heng Qi?, Jia Wu?, Lingfei wut

2.1 Notations and Problem Definition

Definition 1. Social Trust Internet of Things. A Social Trust
Internet of Things, defined as G = (V,E, A, R, ¥, ¢), is a form
of heterogeneous directed network, where V = {v1,...,0,} and
E = {ejj} C VXV represent the sets of nodes and edges, respectively.
It is also associated with a node type mapping function ¢ : V.— A,
and an edge type mapping function ¢ : E — R, where A €
{user, object} and R € {(user, user), (user, object), (object, user),
(object, object)} denote the sets of node and edge types. All edges
formulate an original adjacency matrix A = (ajj)nxn, Where a;;
denotes the relation between nodes v; and v;. Notice that, the edges
representing the trust relationships between user nodes are asym-
metric while the others are symmetric.

Definition 2. Trust Evaluation. Given a Social Trust Internet
of Things G,let T = {{v;,v;), tij|eij € E} be the set of observed trust
relationships of user nodes, where nodes v; and v j denote trustor
and trustee, respectively, and t;; measures the trustworthiness from
nodes v; to v, which is typically application specific. For example,
in SIGCOMM-2009 dataset!, trustworthiness is simply divided into
two types, that is, trust or distrust. Trust evaluation is to design a
mapping ¥ to evaluate the trustworthiness of unobserved/missing
trust relationship of the trustor-trustee pair i j» Where v;,0; €V,
v; # vj, and e;j ¢ E. Frequently used notations are summarized in
Appendix A.

2.2 Properties of SIoT Trust

To essentially establish the trustworthiness between pairwise user
nodes within SIoT, multi-aspect trust properties, including asym-
metric, propagative and aggregative, should be considered.

Asymmetric Nature. The trust relationship between nodes is
unequal, that is, node v; trusts node vj does not mean node v; trusts
node v;, shown as Figure 1(a). Formally, let t;; be the trustworthiness
of trustor-trustee pair (v;,v;), the asymmetry nature of trust is
expressed as:

tij # tji. (1)

Propagative Nature. It indicates that trust may be propagated
from one node to another, creating a trust chain for two nodes that
are not explicitly connected. As shown in Figure 1(b), assuming
that node v; trusts node v; and node v; trusts node vy, it can then
S
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(a) Asymmetric Nature
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(b) Propagative Nature

(c) Composable Nature

Figure 1: The illustration of properties of SIoT trust.

!https://crawdad.org/thlab/sigcomm?2009
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Figure 2: The architecture of KGTrust, which is constituted of three key components: 1) Embedding Layer: a comprehensive
user and object modeling by integrating user comments and external knowledge triples; 2) Heterogeneous Convolutional
Layer: a knowledge enhanced graph neural network to further mine and learn node latent embeddings; as well as 3) Prediction

Layer: measuring the trust relationships between user pairs.

be inferred that node v; may trust node vy to a certain extent. The
propagation nature of trust is defined as:

tij Nt = tik. )
Composable Nature. It refers to the fact that the trustworthi-
ness propagated by a node from different trust chains to another
non-neighbor node can be aggregated. For example, in Figure 1(c),
there are two trust chains among node v; and node v}, that is,
v; — v — vj and v; — vy — vy — ;. As a result, it is necessary
to aggregate the trustworthiness from these two trust chains to
determine the trust relationship from node v; to node v;.

2.3 Graph Neural Networks

Graph neural networks (GNNs) are a kind of neural networks that
directly operate on graph-structured data [5, 28]. They typically
follow the message passing framework, which learns embedding of
each node through iteratively propagating and aggregating feature
information from its topological neighbors. Mathematically, let h; D
be the latent embedding of node v; at the /-th layer, the message
passing process is defined as:

m;l) - AGG(I)({hj.l_l) 105 € N(vi)}),

o, )

) _ D, -1
h{"” =uPD? (", m
where AGG and UPD denote the functions to aggregate and up-
date the message, hfo) represents the node’s attributes, and N (v;)

denotes the set of neighbors of node v;.

3 METHODOLOG

We first give a brief overview of the proposed method, and then
introduce three key components in detail.

3.1 Overview

To effectively assess the potential trust relationships within SIoT,
we propose a novel knowledge enhanced graph neural network that
can fully mine the inherent characteristics of nodes and model the
multi-aspect properties of SIoT trust, namely KGTrust. The whole
structure of KGTrust is illustrated in Figure 2, which consists of
three main components, that is, embedding layer, heterogeneous
convolutional layer as well as predictor layer. Specifically, for the
embedding layer, we initialize the embeddings of users and objects
by extracting useful and related knowledge from users’ comment
behaviors and external structured triples, so as to fully explore the
intrinsic characteristics of users and objects. For the heterogeneous
convolutional layer, we utilize the propagative nature of SIoT trust
to augment the trust structure, and then introduce a discriminative
convolutional mechanism to learn both node and object embed-
dings by considering the role of a user as a trustor or a trustee,
respectively. After that, we leverage a learnable gating mechanism
to adaptively integrate these two types of user embeddings, captur-
ing the asymmetric nature of SIoT trust. For the prediction layer, a
single-layer multiple perceptron is introduced to predict the trust
relationships between user pairs based on user embeddings.
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3.2 Embedding Layer

To gain a deeper insight into the inherent characteristics of users
and objects within SIoT, we initialize user and object embeddings,
which is the cornerstone of GNN, by taking account of the users’
comment behaviors and external knowledge related to object de-
scriptions, respectively.

User Embedding. In SIoT, users typically deliver their opinions
on objects by providing comments in the form of text, which reflects
the characteristics of users to a certain extent. Based on this, for
each user, we employ Doc2vec [14], an unsupervised algorithm to
learn fixed-length node embeddings for texts with variable lengths,
to initialize its embedding. Specifically, for a user node v;, let d;
be the set containing all the comments delivered by v;, the user
embedding h; can then be calculated as:

h; = Doc2vec(d;). (4)

Object Embedding. For object nodes, we capture their charac-
teristics by integrating structured knowledge associated with object
descriptions (i.e., head-predicate-tail triplets) from the knowledge
graph. Here we employ TransE [4], a simple and effective approach,
to parameterize triplets to learn object embeddings. It encodes the
head (or tail) node as a low-dimensional embedding and the relation
as algebraic operations between head and tail embeddings. Given a
triplet (h, r,t), let r be the embedding of relation r, h and t be the
embeddings of objects h and t, respectively. TransE aims to embed
each object and relation by optimizing the translation principle
h +r =~ t, if (h,r, t) holds. The score function is formulated as:

f(h:r>t):_||h+r_t||§a (5)

where h and t are subject to the normalization constraint that the
magnitude of each vector is 1. Intuitively, a large score of f(h,r,t)
indicates that the triplet is more likely to be a true fact in real-world,
and vice versa. Note that we only consider triplets where object
nodes within the SIoT are head instead of tail. In this way, the object
embeddings can be effectively enriched at a semantic level.
Embedding Transformation. Considering that the generated
user and object embeddings may have unequal dimensions, or even
be lied in different embedding spaces, we need to project these two
types of embeddings into the same embedding space. For a node
v; with type ;, we project its embeddings into the same latent
embedding space using a type-specific linear transformation W,

h] =Wy, - h;, ©)

where h; and h are the original and projected embedding of node
v;, respectively.

3.3 Heterogeneous Convolutional Layer

After initializing the user and object embeddings, we further design
a heterogeneous convolutional layer, which takes the multi-aspect
trust properties into consideration, so as to better assess trustwor-
thiness among users in SIoT. It mainly consists of three modules:
personalized PageRank (PPR)-based neighbor sampling, informa-
tion propagation and information fusion.

PPR-Based Neighbor Sampling. Generally, the available user-
specified trust relationships within SIoT are often very sparse, that
is, a limited number of user pairs with trust relationships are buried
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in a large proportion of user pairs without trust relationships, mak-
ing trust evaluation an arduous task [23]. To this end, we consider
employing personalized PageRank, which shows effectiveness in
graph neural networks [13], to augment the trust structure.
Personalized PageRank [7] adopts a random walk with restart
based strategy that uses the propagative nature of SIoT trust to
calculate the correlation between nodes. It takes the graph structure
as input, and computes a ranking score p;; from source node v; to
target node v;, where the larger p;;, the more similar these two

nodes. Formally, given a SIoT G = (V,E), let A =D 2AD? be
the normalized adjacency matrix, where A = A + I stands for the
adjacency matrix with self-loops, the PPR matrix P is calculated as:

P=(1-M)AP+AL (7)

where A is the reset probability. It is worth noting that we use a
push iteration method to compute PPR scores according to the
existing work [3], which can be approximated effectively even for
very large networks [26].

Then, the augmented trust relationships of each user node v;
can be constructed by choosing its top k PPR neighbors:

N; = argmax Z Pij» 8)
V'CVU,|V'|=k v; eV’

where Vi represents the set of user nodes in SIoT. In this way, sev-
eral long-range but informative trust relationships can be captured,
and further promote the modeling of user nodes.

Information Propagation. Due to the asymmetry of trust re-
lationships in SIoT, each user may have dual roles as a trustor or
trustee. For this purpose, we consider propagating node embed-
dings over both trustor role and trustee role, so as to extract two
specific embeddings in these two roles.

Specifically, from the perspective of trustor, we learn the embed-
dings of users and objects through users’ augmented outgoing trust
relationships, objects’ connections, and interactions between user-
object pairs. Mathematically, given a target node v;, as different
types of neighbor nodes (user or object) may have different impacts
on it, we employ type-level attention [8] to learn the importance of
different types of neighbor nodes. Let Ag = [d;;] be the normal-
ized adjacency matrix which is related to the trustor role, hy, be the
embedding of type ¢, which is defined as the sum of the neighbor
node embedding h;. with node v; € N; under type ¥, that is:

hW = Zvj ﬁijh}. 9)

Based on the target node embedding h; and its corresponding
type embedding hy, the type-level attention weights can then be
calculated as:

ay = softmaxw(o(ryl/T/ (b}, hy])), (10)

where 7y is the attention vector for the type y, and softmax is
adopted to normalize across all the types.

In addition, considering that different neighbor nodes of the
same type could also have different importance, we further apply
node-level attention [28] to learn the weights between nodes of the
same type. Formally, given a target node v; with type ¢, let v be
its neighbor node with type //, the node-level attention weights
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can then be computed as:
ﬁij = softmaxz,j(o-(yT sy [h:, h;])), (11)

where y is the attention vector, and softmax is applied to normalize
across all the neighbor nodes of the target node v;.

By integrating the above process, the matrix form of the layer-
wise propagation rule can be defined as follows:

0 o5 WD

where A is the set of node types in SIoT, and By, = (Bij)nxn rep-
resents the attention matrix. In this way, the specific information
about trustor role can be obtained.

As for the trustee role, we learn the node embeddings via users’
augmented incoming trust relationships, objects’ connections, and
interactions between user-object pairs, which can be calculated
in the same way as in trustor role. Therefore, the specific infor-
mation about trustee role can be captured by generating the node
embeddings H.

Information Fusion. In order to achieve the optimal combina-
tion of embeddings of a user in different roles (trustee or trustor)
for downstream trust evaluation, we introduce a learnable gating
mechanism [39] to determine how much the joint embedding de-
pends upon the role of trustor or trustee. Given a user node v;, let
h; and h; represent its embeddings as trustor role and trustee role,
respectively, the joint representation z; can be calculated as:

ZizgeGhi“'(l_ge)@Ei, (13)

where g is a gating vector with elements in [0, 1] to balance embed-
dings, and © represents element-wise multiplication. Obviously, the
joint embedding with gate closer to 0 tends to use the embedding
of a user as a trustee; whereas the joint embedding with gate closer
to 1 utilizes the embedding of a user as a trustor. More importantly,
to constrain the value of each element in [0, 1], we apply sigmoid
function to calculate the gate g, as:

ge = sigmoid(ge), (14)

where g, is a real-value vector that is learned during training.

3.4 Predictor Layer

To convert the learned user embeddings into the latent factor of
trust relationship in SIoT, for a given user pair (v;,v;), we first
concatenate the embeddings of nodes v; and v, and then feed them
to a multiple perceptron (MLP) followed by a softmax function as:

7ij = softmax(MLP(z; || z;)), (15)

where || is the concatenation operator, and 7j;; is the predicted
probability that the user pair (v;,v;) belongs to a trusted pair or a
distrusted pair.

Finally, we define the trust evaluation loss function by using
cross entropy as:

£=-" yijlngy, (16)
0;0;

where y;; denotes the ground truth of trust relationship of user pair
(vi,vj). In particular, we employ the back propagation algorithm
and Adam optimizer to train the model.
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4 EXPERIMENTS

We first introduce the experimental setup, and then compare the
new approach KGTrust with state-of-the-arts in terms of effective-
ness and robustness. We finally present an in-depth analysis of
different components of KGTrust and give the parameter analysis.

4.1 Experimental Setup

Datasets. We conduct experiments on three widely used SIoT
datasets, namely FilmTrust?, Ciao® and Epinions3, where the basic
information is summarized in Table 1. More details of datasets are
provided in Appendix B.1.

Table 1: Statistics of the datasets.

FilmTrust Ciao  Epinions
#Users 1508 4409 8174
#0Objects 2071 12,082 11,379
#Comment Behaviors - 136,105 306,133
#Trust Relationships 1853 88,649 224,589

Trust Network Density 0.0008 0.0046 0.0034

“-” denotes no such information provided by the dataset.

Baselines. We compare KGTrust with eight state-of-art methods.
They include: 1) the network embedding methods GAT [28], SGC
[36], SLF [40], STNE [41] and SNEA [16], and 2) the trust evaluation
methods DeepTrust [30], AtNE-Trust [32] and Guardian [17]. More
details of baselines are provided in Appendix B.2.

Implementation Details. For all baselines, we use the source
codes released by their corresponding authors. For KGTrust, we
use Wikipedia anchors to align the mentions extracted from object
descriptions of SIoT to Wikidata5M [33], a newly proposed large-
scale knowledge graph containing 4M entities and 21M fact triplets.
We use Adam optimizer with an initial learning rate of 0.005 and
a weight decay of 5e-4. In addition, we set the layer number of
heterogeneous convolutional mechanisms as 2, the reset probability
A as 0.15 according to [44], and search the top k for PPR-based
neighbor sampling strategy in {10, 20, 30, 40, 50}. As there are only
positive links (e.g., observed trust relationships) in our FilmTrust,
Epinions and Ciao datasets, a set of unlinked user pairs with the
same proportion is randomly selected as the negative instance set
for training and testing.

We use Accuracy and F1-Score, which are two commonly used
metrics in trust evaluation tasks, to measure the performance of
our proposed KGTrust and baselines.

4.2 Performance Comparisons

We empirically compare KGTrust to baselines from two perspec-
tives, including effectiveness and robustness.

Effectiveness. For different datasets, we set the ratio of training
and testing set to 90%:10%, and run each method 10 times to report
the average results of different models.

As presented in Table 2, we can find that KGTrust performs con-
sistently much better than all baselines across three datasets. To be

Zhttp://www.librec.net/datasets.html
3http://www.cse.msu.edu/~tangjili/trust.html
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Table 2: Performance comparions on three SIoT datasets in terms of Accuracy (%) and F1-Score (%). (bold: best)

Datasets Metrics GAT SGC SLF STNE SNEA DeepTrust AtNE-Trust Guardian KGTrust

. Accuracy 68.29 75.61 65.55 72.87 63.91 53.05 63.11 77.74 79.82
FilmTrust

F1-Score 71.74 77.14 65.65 73.27 66.67 64.63 65.13 79.78 80.92

Ci Accuracy 64.28 69.93 72.17 71.33 68.97 50.17 68.23 72.17 72.56

iao

F1-Score 71.36 70.34 73.39 71.38 70.83 66.52 71.50 73.50 74.30

o Accuracy 72.05 78.62 80.83 79.51 74.63 58.38 74.35 80.82 81.39
Epinions

F1-Score 75.57 78.76 80.95 78.57 74.92 64.80 74.88 81.11 81.84

Table 3: Performance comparions with different training ratios on three SIoT datasets. (bold: best)

Datasets Metrics Training | GAT SGC SLF STNE SNEA  DeepTrust  AtNE-Trust  Guardian | KGTrust
50% 60.36 71.26 54.96 69.42 60.14 49.51 60.17 74.14 74.94
60% 62.79 72.21 55.51 69.98 61.01 50.08 60.72 74.81 76.11
Accuracy
) 70% 64.39 73.16 61.22 72.14 62.90 50.20 62.14 75.51 78.16
80% 67.28 74.01 63.61 72.78 63.30 51.68 63.00 76.45 79.66
. 90% 68.29 75.61 65.55 72.87 63.91 53.05 63.11 77.74 79.82
FilmTrust
50% 62.35 71.52 56.48 69.44 62.45 60.11 60.27 75.52 75.98
60% 63.51 72.40 57.37 70.17 62.68 60.38 61.69 76.52 76.73
F1-Score
(%) 70% 66.80 73.83 62.23 72.17 64.83 62.20 63.42 78.56 78.94
80% 68.34 74.40 65.00 72.33 65.12 63.41 63.88 79.08 80.47
90% 71.74 77.14 65.65 73.27 66.67 64.63 65.13 79.78 80.92
50% 59.76 67.40 71.32 70.69 66.88 49.80 62.24 71.27 71.72
60% 61.03 68.29 71.66 70.87 67.82 50.01 62.66 71.62 72.11
Accuracy
<) 70% 62.17 68.39 71.89 70.92 68.15 50.03 63.52 71.90 72.34
80% 63.01 68.81 72.08 71.05 68.53 50.07 66.58 71.94 72.36
Ci 90% 64.28 69.93 72.17 71.33 68.97 50.17 68.23 72.17 72.56
120
50% 66.47 67.53 71.87 70.83 67.68 61.30 62.76 71.84 72.85
60% 68.08 68.58 72.68 70.85 68.87 61.38 63.03 72.28 73.11
F1-Score
(%) 70% 70.61 68.78 72.88 71.07 69.45 61.77 65.37 72.67 73.23
80% 70.85 69.76 73.00 71.32 70.15 63.63 69.92 73.32 74.06
90% 71.36 70.34 73.39 71.38 70.83 66.52 71.50 73.50 74.30
50% 61.70 77.22 79.99 79.04 73.84 55.53 71.90 80.15 80.59
60% 61.92 77.57 80.05 79.13 74.12 56.25 73.01 80.22 80.65
Accuracy
%) 70% 64.76 77.82 80.44 79.32 74.36 56.71 73.40 80.31 80.96
80% 70.79 78.17 80.60 79.45 74.59 58.23 73.59 80.55 81.14
L 90% 72.05 78.62 80.83 79.51 74.63 58.38 74.35 80.82 81.39
Epinions
50% 65.60 77.63 80.08 78.18 73.28 61.27 72.87 80.41 81.05
60% 66.64 77.92 80.15 78.22 73.73 63.93 73.74 80.51 81.11
F1-Score
(%) 70% 72.67 78.05 80.46 78.46 74.19 64.10 73.80 80.58 81.46
80% 72.84 78.56 80.63 78.50 74.61 64.36 74.29 80.86 81.70
90% 75.57 78.76 80.95 78.57 74.92 64.80 74.88 81.11 81.84
specific, in terms of accuracy, the improvement of KGTrust over to 17.04% on these three datasets. These results not only demon-
different baselines ranges from 2.08% to 26.77%, 0.39% to 22.39%, strate the superiority of enriching node semantics with node-related
and 0.57% to 23.01% on FilmTrust, Ciao, and Epinions, respectively. knowledge, but also validate the effectiveness of flexibly preserving
In terms of F1-Score, the improvement of KGTrust over different the multi-aspect properties of SIoT trust during information prop-

baselines ranges from 1.14% to 16.29%, 0.80% to 7.78%, and 0.73% agation. Particularly, the performance of KGTrust is much better
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than that of vanilla GAT (i.e., 11.53%, 8.28%, 9.34% relative improve-
ments in accuracy, and 9.18%, 2.94%, 6.27% relative improvements
in F1-Score), which further shows the significance of jointly con-
sidering three key ingredients within SIoT, namely heterogeneous
graph structure, node semantics and associated trust relationships.
Neither DeepTrust nor AtNE-Trust is so competitive here, which is
mainly because they fail to make better use of the information prop-
agation over graph structure, seriously affecting their performance
for trust evaluation.

Robustness. To further measure the stable ability of our KGTrust
and baselines, we conduct experiments across all training and test-
ing set ratios. The ratio of training set is set as x% and the remaining
(1 — x)% as the testing set, where x belongs to {50, 60, 70, 80, 90}
over three datasets. We run each method 10 times and report the
average performance in terms of accuracy and F1-Score.

The results are shown in Table 3. As shown, the proposed method
KGTrust always performs the best across different training ratios
and datasets. Specifically, when fewer observed trust relationships
are provided, the performances of baselines are surprisingly re-
duced, especially the classical GNN-based methods such as GAT,
while our model still achieves relatively high performance. This
demonstrates that our method can better assess trust relationships
by validly alleviating data sparsity with personalized PageRank-
based neighbor sampling. Moreover, as the ratio of observed trust
relationships increases, KGTrust consistently maintains superior
and achieves the best performance when the training set ratio is 90%,
which validates the effectiveness and robustness of the proposed
approach. Also of note, KGTrust outperforms Guardian, which uses
GNN for trust evaluation, in all cases, further indicating the ratio-
nality of fully mining the intrinsic characteristics of nodes with the
guidance of node-related knowledge.

4.3 Ablation Study

Similar to most deep learning models, our proposed KGTrust also
contains some important components that may have a significant
impact on the performance. To test the effectiveness of each com-
ponent, we conduct experiments by comparing KGTrust with five
variations. The variants are as follows: 1) KGTrust of using ran-
dom vectors instead of introducing structured triples to initialize
object embeddings, named as w/o Triples, 2) KGTrust of removing
PPR-based neighbor sampling, named as w/o PPR, 3) KGTrust of
removing the trustee role of a node, and aggregating information
only from its trustor role, named as w/o Trustee, 4) KGTrust of
removing the trustor role of a node, and aggregating information
only from its trustee role, named as w/o Trustor, and 5) KGTrust
of employing concatenation operator instead of gating mechanism
to fuse the two role embeddings (truster or trustee) of a user node,
named as KGTrust (Con).

From the results in Table 4, we can draw the following conclu-
sions: 1) The results of KGTrust are consistently better than its
five variants, indicating the effectiveness and necessity of jointly
taking into account of heterogeneous graph structure, node seman-
tics and associated trust relationships within SIoT. 2) Removing
structured triples or PPR-based neighbor sampling strategy leads
to slight performance drop, which demonstrates the usefulness of
employing external knowledge to deeply mine object semantics
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Table 4: Comparisons of our KGTrust and its five variants
on three SIOT datasets in terms of Accuracy (%) and F1-Score
(%). For FilmTrust, we do not introduce structured triples as
no object descriptions provided, while such information is
provided by Ciao and Epinions.

Datasets FilmTrust Ciao Epinions
Accuracy F1-Score | Accuracy F1-Score | Accuracy F1-Score

KGTrust 79.82 80.92 72.56 74.30 81.39 81.84
- w/o Triples - - 71.10 72.48 80.51 80.86
- w/o PPR 78.29 78.74 72.12 72.88 80.71 81.19
- w/o Trustee 78.13 79.18 59.07 64.60 70.73 72.10
- w/o Trustor 77.22 78.37 60.58 65.67 70.62 72.01
KGTrust (Con) 76.76 77.51 59.28 64.74 70.75 73.10

and propagative nature of trust to enrich the trust relationships.
3) Neither KGTrust w/o Trustee nor KGTrust w/o Trustor is so
competitive here, making us realize the importance of considering
the trust asymmetry nature during information propagation. 4)
Compared to KGTrust (Con), the improvement brought by KGTrust
is more significant, which illustrates the rationality of adaptively
fusing the embeddings of dual roles of a user.

4.4 Parameter Analysis

We investigate the sensitivity of two main parameters, including the
top k for PPR-based neighbor sampling and the dimension of final
embeddings, on Ciao and Epinions datasets. Results on FilmTrust
dataset can be found in Appendix C.

Analysis of k. The parameter k determines the number of trust
relationships augmented by each user node with PPR-based neigh-
bor sampling. We vary its value from 10 to 50 and the corresponding
results are shown in Figure 3. With the increase of augmented trust
relationships, the performance shows a trend of first rising and then
descending. This is probably because a small number of augmented
trust relationships are not enough to obtain informative node em-
beddings, whereas too many augmented trust relationships may
introduce noise and thus weaken the information propagation.
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Figure 3: The performance with different numbers of top k
for PPR-based neighbor sampling.

Analysis of Final Embedding Dimension. We test the effect
of the dimension of final embedding, and vary it from 16 to 256. The
result is shown in Figure 4. With the increase of the dimension of
final embeddings, the values of metrics, including accuracy and F1-
Score, increase first and then start to decrease. It is reasonable since
KGTrust needs a suitable dimension to encode the key ingredients
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within SIoT, including heterogeneous graph structure, node seman-
tics and associated trust relationships, while larger dimensions may
introduce additional redundancies, affecting the performance of
assessing trustworthiness.
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Figure 4: The performance with different dimensions of fi-
nal embedding.

5 RELATED WORK

We briefly review some literatures that are related to our work, that
is, trust evaluation and knowledge graph neural networks.

5.1 Trust Evaluation

Trust plays a crucial role in assisting users gather reliable infor-
mation and trust evaluation. predicting the unobserved pairwise
trust relationships among users, draws considerable research inter-
est. Existing trust evaluation methods can be roughly divided into
three categories, including random walk-based methods, matrix
factorization-based methods and deep learning-based methods.

Random Walk-Based methods. In the past decade, many at-
tentions have been paid to exploit trust propagation along the path
from the trustor to the trustee to assess trustworthiness. For exam-
ple, ModelTrust [22] conducts motivating experiments to analyze
the difference in accuracy and coverage between local and global
trust measures, and then introduces a local trust metric to predict
trustworthiness of unknown users. OptimalTrust [20] designs a new
concept, namely quality of trust, to search the optimal trust path to
generate the most trustworthy evaluation. After that, AssessTrust
[21] introduces three-valued subjective logic (3VSL) that effectively
considers the information in trust propagation and aggregation to
assess multi-hop interpersonal trust. OpinionWalk [18] computes
the trustworthiness between any two users based on 3VSL and
breadth-first search strategy.

Matrix Factorization-Based Methods. Several recent studies
have extended matrix factorization to trust evaluation [35], where
the basic idea is to learn the low-rank representations of users
and their correlations by incorporating prior knowledge and node-
related data. For instance, hTrust [23] presents an unsupervised
method that exploits low-rank matrix factorization and homophily
effect for trust evaluation. mTrust [24] argues that the trust rela-
tionships among users are usually multiple and heterogeneous, and
accordingly designs a fine-grained representation to incorporate
multi-faceted trust relationships. sTrust [35] proposes a trust pre-
diction model by considering social status theory that reflects users’
position or level in the social community.

Neural Network-Based Methods. As neural networks become
the most eye-catching tools for tracking graphs, several efforts have
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been devoted to utilizing neural networks to boost the performance
of trust evaluation. For example, NeuralWalk [19] designs a neu-
ral network architecture that models single-hop trust propagation
and trust combination for assessing trust relationships. DeepTrust
[30] presents a deep trust evaluation model which effectively mines
user characteristics by introducing associated user attributes. AtNE-
Trust [32] improves the performance of trust relationship prediction
by jointly capturing the properties of trust network and multi-view
user attributes. C-DeepTrust [31] points out that the user prefer-
ence may change due to the drifts of their interests, and accordingly
integrates both the static and dynamic user preference to tackle
the trust evaluation problem. Guardian [17] estimates the trustwor-
thiness between any two users by simultaneously capturing both
social connections and trust relationships. GATrust [10] presents a
GNN-driven approach which integrates multiple node attributes
and the observed trust interactions for trust evaluation.

Despite various trust evaluation algorithms or models have been
developed, they still suffer from an inability to comprehensively
mine and encode the node semantics within SIoT and multi-aspect
properties of SIoT trust.

5.2 Knowledge Graph Neural Networks

To enable more effective learning on graph-structured data, re-
searchers have dedicated to employing external knowledge[2, 11],
such as large-scale knowledge bases Wikipedia and Freebase, to en-
rich node representations and apply them to downstream tasks. For
example, KGAT [34] presents a knowledge-aware recommendation
approach by explicitly modeling the high-order connectivity with
semantic relations in collaborative knowledge graph. COMPGCN
[27] learns both node and relation embeddings in a multi-relational
graph via using entity-relation composition operations from knowl-
edge graph embedding. Caps-GNN [15] designs a novel personal-
ized review generation approach with structural knowledge graph
data and capsule graph neural networks. Later on, RECON [2]
points out that knowledge graph can provide valuable additional
signals for short sentences, and develops a sentence relation ex-
traction integrating external knowledge. KCGN [9] proposes an
end-to-end model that jointly injects knowledge-aware user- and
item-wise dependent structures for social recommendation. How-
ever, how to utilize the guidance of external knowledge to facilitate
the understanding of node semantics within SIoT, and further as-
sess trustworthiness among users is still an area that needs to be
explored urgently.

6 CONCLUSION

In this paper, we present a novel knowledge enhanced graph neural
network, namely KGTrust, for trust evaluation in Social Internet of
Things. In specific, we comprehensively incorporate the rich node
semantics within SIoT by deeply mining and encoding node-related
information. Considering that the observed trust relationships are
often relatively sparse, we use personalized PageRank-based neigh-
bor sampling strategy to enrich the trust structure. To further main-
tain the multi-aspect properties of SIoT trust, we learn effective
node embeddings by employing a discriminative convolutional
mechanism that considers the propagative and composable nature
from the perspective of a user as a trustor or a trustee, respectively.
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After that, a learnable gating mechanism is introduced to adap-
tively integrate the information from dual roles of a user. Finally,
the learned embeddings for pairwise users are concatenated for a
trust relationship predictor. Extensive experimental results demon-
strate the superior performance of the proposed new approach over
state-of-the-arts across three benchmark datasets.
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A

NOTATIONS

Here we list the key notations in the main text in Table 5.

Table 5: Summary of notations.

Notation Description

G A Social Trust Internet of Things.

V,E The sets of nodes and edges of a SIoT.

AD The adjacency matrix and node degree matrix.

tij The trustworthiness from node ; to node v;.

Ni The set of neighbors of node v;.

(h,r,t) A triplet in the knowledge graph.

Wy The type-specific linear transformation matrix.

P The personalized PageRank matrix.

hi,ﬁi The latent embeddings of a given user node v; as

trustor role or trustee role, respectively.

o The non-linear activation function.

a, p Weights of type-level and node-level attentions.
B DETAILS OF EXPERIMENTAL SETTINGS

B.1

B.2

Datasets

o FilmTrust is extracted from the film review website, which
consists of two kinds of information, that is, social trust rela-
tionships between users; as well as interactive connections
between users and objects. For FilmTrust, considering that
there is no information about users’ comment behaviors and
object names, we utilize random vectors to initialize user and
object embeddings, which are trainable during the message
passing process.

e Ciao and Epinions are two who-trusts-whom knowledge-
sharing websites that contain four types of information, that
is, explicit trust relationships between users; connections
between users and objects representing interactive relation-
ships; comment behaviors that reveal users’ attitudes and
preferences in the form of text; as well as object descrip-
tions that reflect the characteristics of objects. For these two
datasets, we reserve users with more than 15 comment be-
haviors and objects with more than 10 comment behaviors.

Baselines

o GAT [28] is an attention-based graph neural network which

assigns different weights to neighbors to improve the aggre-
gating process.

o SGC [36] is a simplified graph neural network that reduces

the complexity of model by removing nonlinearities and
collapsing weight matrices between consecutive layers.

e SLF [40] is a signed network embedding model, which as-

sociates each type of social relationship to the comprehen-
sive effects of positive and negative signed latent factors,
and learns node embeddings by minimizing a negative log-
likelihood objective function.

C
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STNE [41] is a social trust network embedding model that
preserves both a node’s relations to latent factors and the
trust transfer patterns for trust prediction.

SNEA [16] is a signed network embedding model through
designing a graph attentional layer that utilizes a masked self-
attention mechanism to calculate the importance coefficients
of neighbors.

e DeepTrust [30] is a trust evaluation model based on the
homophily theory, which effectively combines the users’
comment behaviors and the characteristics of users’ inter-
ested objects for assessing trustworthiness.

o AtNE-Trust [32] is a deep trust prediction model that cap-

tures user embeddings through taking into account of both
the dual roles (trustor or trustee) and the connectivity prop-
erties of users.

e Guardian [17] is an end-to-end trust evaluation model that

explicitly incorporates the popularity trust and engagement
trust into user modeling using graph neural networks.

ADDITIONAL EXPERIMENTS

Following the setting from the Section 4.4, we give the additional
analysis of top k for PPR-based neighbor sampling and the dimen-
sion of final embedding on FilmTrust dataset in Figure 5. As shown,
the changing process of these two parameters follow the same way
with the results in Figure 3 and Figure 4.
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